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ALSUntangled 45: Antiretrovirals

THE ALSUNTANGLED GROUP

ALSUntangled reviews alternative therapies on

behalf of persons with ALS (PALS). In our previous

publication ‘‘The Rife Machine and retroviruses’’,

we briefly discussed the evidence for a role of

retroviruses in ALS (1). Here, we review the use of a

class of medications called antiretrovirals (ARVs) for

treating ALS, a topic for which we have had over

1400 requests (2).

Overview

Retroviruses are a family of RNA viruses defined by

their ability to integrate themselves into the host cell

DNA. This feature makes it challenging to eliminate

them. Retroviruses acquired by infection are known

as exogenous retroviruses. In comparison, endogen-

ous retroviruses have integrated themselves into

germline DNA many generations ago and as such

are inherited from generation to generation. ARVs

are a class of drugs developed for use against viral

replication and cell infection by human immuno-

deficiency virus (HIV), an exogenous retrovirus that

is the cause of AIDS.

Mechanisms

Retroviruses are associated with a broad spectrum of

neurological disorders (3–9). HIV has been asso-

ciated with an ALS-like motor neuron disease in

over 30 patients (3–6). Another exogenous retro-

virus, named Human T-Cell Leukemia Virus type 1

(HTLV-1), causes ‘‘HTLV-1 associated myelopathy/

tropical spastic paraparesis,’’ which has substantial

overlap of clinical features with ALS (5,8). While

treatment of HIV-associated ALS-like syndromes

with ARVs can sometimes lead to stabilization or

remission of the ALS-like symptoms (5,6), to date

no ARVs have been shown to be useful in treating

HTLV-associated myelopathy (9).

Some PALS without HIV or HTLV infection

have detectable activity of an enzyme used by

retroviruses called reverse transcriptase (RT; 5,10).

Either an unknown exogenous retrovirus or a type of

human endogenous retrovirus (HERV) could be the

source of this RTactivity. One study investigated RT

activity in PALS and their family members. The

results showed that �47% of PALS, �13% of

spouses of PALS, �43% of healthy blood relatives

of PALS, and �21% of non-related healthy control

participants had detectable RT activity. Because the

percent of PALS positive for RT activity was similar

to blood relatives, but not to spouses, this suggests

an endogenous genetic source of the RT activity, i.e.

a HERV, and not an exogenous retrovirus acquired

through infection (10).

PALS have been reported to have higher HERV

expression in muscle and brain (5,11) and higher

levels of certain anti-HERV (type K) antibodies

relative to controls (12). There are at least two

possible explanations for this. First, neuroinflamma-

tion in PALS may activate HERV expression. In

some PALS, there is activation of the nuclear factor-

�B (NF-�B) pro-inflammatory cellular pathway

(13–15). Activation of the NF-�B pathway can

cause expression of HERV genes in vitro (15,16),

and, in neurons of PALS, increased protein levels of

HERV RT correlate with increased NF-�B levels

(15). The second possibility is that HERV protein

levels are mediated by TAR DNA binding protein

43 (TDP-43), which has an important role in ALS

pathophysiology (17) and has been shown to be

increased in the cerebrospinal fluid (18–22) and
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blood (23) of some PALS. Based on experiments in

cultured human cells, Drosophila (fruit fly) and mice

TDP-43 models, it is possible that HERV RT

protein levels are being increased by TDP-43

through a not yet clear mechanism (11,24–26).

Interestingly, HIV infection of the CNS also leads to

neuroinflammation, increased TDP-43 expression,

and increased HERV expression (27).

Regardless of the cause of increased HERV

expression, it is still not clear if HERV is contribut-

ing to ALS pathology or is simply a byproduct.

HERV expression is also increased in a number of

other neurological (7,28,29) and non-neurological

diseases, such as cancer (30). Furthermore, some

think that HERVs may play beneficial roles in the

pathophysiology of certain diseases (31); however,

this may not be the case in all diseases as research on

multiple sclerosis has suggested a pathogenic role for

HERVs (32,33).

One recent study provided multiple lines of

evidence that expression of a HERV (type K) might

cause human motor neuron disease (11). First, the

research group showed that HERV full virus or

HERV envelope protein (Env) expression is toxic to

iPSC-derived human neurons. Second, they created

mice that expressed HERV Env in neurons at high

levels. These mice had decreased counts of upper

and lower motor neurons and developed a disease

characterized by progressive muscle weakness with

clinical features and muscle biopsy findings similar

to human ALS (11). However, these findings are not

entirely consistent with prior studies that found

HERV Env expression in a human neuroblastoma

cell line increased expression of neuronal growth

factors and was protective against some neurotoxins

in a mouse neuroblastoma cell line (34). These

discrepancies could be due to the use of different

cell lines, use of slightly different HERV type K Env

proteins, or use of different experimental methods to

judge cellular injury. These results will need to be

independently replicated.

Although there is substantial evidence that

HERV expression is increased in PALS (5,11) and

pathological in-cell culture and mouse models (11),

the use of ARVs against HERVs is postulated on the

possibility that a HERV is actively replicating to

produce infectious viral particles, i.e. ARVs are

lifecycle inhibitors and not inhibitors of gene

expression. To-date, there have been two HERVs

discovered in the human genome that appear to be

potentially able to produce infectious virions (35,36)

of which one (36) so-far has been experimentally

confirmed to be capable of generating infectious

virions (37).

Given that currently available ARVs were devel-

oped for use in HIV infection, it is important to

assess their ability to inhibit the HERV lifecycle.

The current evidence, taken from in vitro studies,

suggests that HERV type K is susceptible to most

members of a class of ARVs called nucleoside

reverse transcriptase inhibitors (NRTIs; 38,39),

but is relatively resistant to ARVs from the class

protease inhibitors (PIs; 38–41). Evidence for in

vitro efficacy of non-nucleoside reverse transcriptase

inhibitors (NNRTIs) and integrase inhibitors

(INSTIs) is mixed (38,39).

If infectious virions are not produced, but it is

the expression of HERV proteins themselves that is

deleterious, then the best therapeutic would be an

interfering RNA, CRISPR gene editing, or another

mechanism to block HERV gene expression.

Indeed, some think that it is the Env protein of

HERV itself that is neuropathogenic (11,42) simi-

larly to what research on other retroviral Env

proteins has shown (42,43). There are currently

efforts to develop an antibody that specifically

targets HERV Env (44), which could also potentially

be able to block viral cell infection (45).

In summary of ‘‘mechanisms,’’ we found evi-

dence of HERV expression in ALS and that some

ARVs are effective against the HERV lifecycle, but it

still remains to be determined if suppression of

HERV expression and/or viral replication and cell

infection are mechanisms that are relevant to

achieving a positive therapeutic outcome in PALS,

especially as HERV expression seems beneficial

in some diseases (31). Based on this evidence,

ALSUntangled assigns a TOE ‘‘mechanisms’’ grade

of D (Table 1).

Pre-clinical models

In a Drosophila model of ALS expressing human

TDP-43 (hTDP-43) (46), the transgenic fruit flies

have progressive neurological degeneration charac-

terized by brain cell death, progressive motor

impairment, and a substantially reduced lifespan

(25,46). Using this model, one group found that

hTDP-43 selectively expressed in the flies’ glial

cells, but not when selectively expressed in neurons,

caused a Drosophila endogenous retrovirus similar to

HERV type K, named gypsy, to be expressed in

Table 1. Table of evidence.

Grade Explanation

Mechanism D ARVs are effective against some aspects of

the retroviral lifecycle, but it is

unknown if ARVs will lead to a positive

outcome in ALS pathophysiology.

Pre-Clinical C One flawed pre-clinical study with a

Drosophila model of ALS reported

some benefit with ARVs of the NRTI

class.

Cases U We found no cases of PALS using ARVs.

Trials F Two published trials in PALS, each using

a different ARV in monotherapy,

showed no benefit.

Risks U Experience of ARVs in PALS is limited.

The side effect profile will vary by the

specific ARV(s) used.
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higher quantities. In flies with hTDP-43 expressing

glia, inhibition of gypsy expression by interfering

RNA caused the flies to have a lifespan approxi-

mately 75% of normal flies, which is an approxi-

mately 5-fold increase in lifespan relative to negative

control hTDP-43 flies and untreated hTDP-43 flies,

which had lifespans approximately 15% of normal

flies. Treatment of the same type of hTDP-43 fly

with each of the antiretroviral NRTIs stavudine and

zidovudine resulted in a small statistically significant

increase in lifespan relative to untreated controls

(25). This study was well-designed with negative

controls, but the meaning of these results to human

ALS is difficult to interpret, because they are based

on an analog endogenous retrovirus in a non-

vertebrate animal and utilized small experimental

groups of 6–12 flies. Based on this single study that

utilized a Drosophila model of ALS to show a small

benefit of ARVs, ALSUntangled assigns a TOE

‘‘pre-clinical models’’ grade of C (Table 1).

Cases

As we discussed in ‘‘mechanisms’’, there have been a

number of cases of an ALS-like disease in individ-

uals that tested positive for HIV, took ARVs, and

recovered some or all motor function (5,6). We

know of no cases of PALS that tested negative for

HIV and HTLV and improved on a regimen

containing ARVs. In the online community

PatientsLikeMe, no PALS report taking ARVs

(47). Based on this lack of information,

ALSUntangled assigns a TOE ‘‘cases’’ grade of U

(Table 1).

Trials

There have been two published trials using ARVs in

PALS. The first trial was an open-label pilot trial in

which 10 PALS each took the NRTI zidovudine

between 2 and 12 months. While serum creatine

kinase (total CK) levels dropped coincident with

treatment, ‘‘clinical courses were not significantly

altered’’ (48). This trial utilized an ARV that has

excellent penetrance into the CNS (49) and has

been reported to be active in vitro against HERV

(38,39); however, the trial design was flawed in that

it enrolled a very small number of PALS, followed

them for variable amounts of time, and used unclear

clinical outcome measures.

The second ARV trial was a double-blind trial

that randomized 46 PALS to either the protease

inhibitor indinavir or placebo for 9 months. The

study measured ALSFRS scores, muscle strength

(MMT composite score), and respiratory function

(FVC) at baseline, 3, 6, and 9 months. The results

showed that there were no significant differences in

the rate of progression between the indinavir group

and the placebo group for each of the three outcome

measures (50). This study was probably underpow-

ered and may have failed to show an effect because

indinavir does not have good potency and efficacy

against HERV (38–41) even though it does pene-

trate the CNS well (49).

It is possible that both of these monotherapy

drug trials failed because combination ARV therapy,

as is commonly used in HIV care, is necessary to

achieve clinically meaningful effects in PALS. We

found two open-label pilot trials of triple ARV

therapy in PALS that have not yet been published

(51,52). Based on the two published trials to-date,

ALSUntangled assigns a TOE ‘‘trials’’ grade of F.

Risks

The effect of HERV inhibition on disease progres-

sion of PALS is unknown. Both above-mentioned

clinical trials in PALS suggested that the side effect

profile of two different ARVs in monotherapy is

similar between PALS and patients with HIV

(48,50); but it is unknown if this extends to other

ARVs. In the zidovudine trial, none of the 12 PALS

discontinued treatment due to side effects; however,

it was not reported if there were any side effects

experienced by these PALS (48). Common side

effects experienced by patients taking zidovudine for

HIV infection include headache, malaise, anorexia,

nausea, and vomiting (53). On PatientsLikeMe,

470% of patients reporting their side effect burden

with zidovudine reported side effects (54). In the

indinavir trial, 4 of 23 PALS taking indinavir had

nephrolithiasis with 2 requiring hospitalization.

Other symptoms reported by PALS included dis-

tortions of taste and gastrointestinal symptoms such

as nausea, diarrhea, and indigestion (50). This side

effect profile is similar to that experienced by

patients with HIV infection (50,55). At least two-

thirds of all patients on PatientsLikeMe that have

taken indinavir report discontinuing indinavir

because of side effects (56). Newer combination

ARV therapies, such as Triumeq (57) and Genvoya

(58), have a less severe side effect profile in patients

with HIV compared with older ARVs. On

PatientsLikeMe, for both Triumeq (59) and

Genvoya (60), �50% of patients reporting their

side effect burden had no side effects and �50% had

only minor side effects. Based on the general lack of

experience in PALS and the highly variable risk

profile between different ARVs, ALSUntangled

assigns a TOE ‘‘risks’’ grade of U for ARVs overall

(Table 1).

Dosing and costs

Antiretrovirals are typically taken by mouth; timing

and amount of dosing varies by specific ARVs.

Presumably, a retrovirus contributing to ALS path-

ology acts in the CNS, so an effective ARV therapy
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should have adequate CNS penetrance.

Additionally, the specific ARV used would need to

have activity against the retrovirus targeted and the

retrovirus would need to be actively producing

infectious viral particles. If targeting HERV type K

would be beneficial in PALS, which is still unknown,

then a reasonable regimen might consist of two

NRTIs and one INSTI given the data above

(38–41). The cost of the specific ARV regimen

would depend on the drug(s) selected. Triumeq and

Genvoya are once-daily pills that each consist of two

NRTIs and one INSTI. Each of these combination

ARV therapy medications cost roughly $3000 for a

one-month supply (61,62). There are less expensive

alternatives to these once-daily pills, but these

alternatives require complex dose timing and a

number of pills that has historically made it difficult

for patients to achieve perfect compliance.

Conclusions

Antiretrovirals are a group of diverse drugs devel-

oped for HIV infections that vary widely in theor-

etical efficacy against HERVs, side effect profiles,

and cost. HERV expression is apparently increased

in some PALS; however, it is unknown if this is a

beneficial, neutral, or pathological process.

Furthermore, it is not clear if ARV-targeted mech-

anisms such as cell infection and viral replication are

taking place in PALS. Based on the lack of evidence

for use of ARVs in PALS who test negative for HIV

and HTLV, we cannot recommend them as a

treatment for ALS. We look forward to the results

of the two ongoing trials of ARVs in PALS.
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